Phylogenetic analysis of cuckoo wasps (Hymenoptera: Chrysididae) reveals a partially artificial classification at the genus level and a species-rich clade of bee parasitoids
Thomas Pauli
Evolutionary Biology and Ecology, Institute of Biology (Zoology), Albert Ludwig University of Freiburg, Freiburg, Germany
These two authors contributed equally to this work.Search for more papers by this authorRuth F. Castillo-Cajas
Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
These two authors contributed equally to this work.Search for more papers by this authorSandra Kukowka
Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
Search for more papers by this authorEric van den Berghe
Universidad de las Americas, Managua, Nicaragua
Present address: Departamento de Ambiente y Desarrollo, Centro de Biodiversidad, EAP Zamorano, Honduras.Search for more papers by this authorFelix Fornoff
Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg, Germany
Search for more papers by this authorSebastian Hopfenmüller
Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
Search for more papers by this authorRalph S. Peters
Center of Taxonomy and Evolutionary Research, Arthropoda Department, Zoological Research Museum Alexander Koenig, Bonn, Germany
Search for more papers by this authorMichael Staab
Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg, Germany
Freiburg Institute for Advanced Studies (FRIAS), Albert Ludwig University of Freiburg, Freiburg, Germany
Search for more papers by this authorFranco Strumia
Dipartimento di Fisica, Pisa University, Pisa, Italy
Search for more papers by this authorCorresponding Author
Thomas Schmitt
Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
Correspondence: Oliver Niehuis, Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany. E-mail: [email protected]; and Thomas Schmitt, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany. E-mail: [email protected]Search for more papers by this authorCorresponding Author
Oliver Niehuis
Evolutionary Biology and Ecology, Institute of Biology (Zoology), Albert Ludwig University of Freiburg, Freiburg, Germany
Correspondence: Oliver Niehuis, Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany. E-mail: [email protected]; and Thomas Schmitt, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany. E-mail: [email protected]Search for more papers by this authorThomas Pauli
Evolutionary Biology and Ecology, Institute of Biology (Zoology), Albert Ludwig University of Freiburg, Freiburg, Germany
These two authors contributed equally to this work.Search for more papers by this authorRuth F. Castillo-Cajas
Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
These two authors contributed equally to this work.Search for more papers by this authorSandra Kukowka
Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
Search for more papers by this authorEric van den Berghe
Universidad de las Americas, Managua, Nicaragua
Present address: Departamento de Ambiente y Desarrollo, Centro de Biodiversidad, EAP Zamorano, Honduras.Search for more papers by this authorFelix Fornoff
Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg, Germany
Search for more papers by this authorSebastian Hopfenmüller
Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
Search for more papers by this authorRalph S. Peters
Center of Taxonomy and Evolutionary Research, Arthropoda Department, Zoological Research Museum Alexander Koenig, Bonn, Germany
Search for more papers by this authorMichael Staab
Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg, Germany
Freiburg Institute for Advanced Studies (FRIAS), Albert Ludwig University of Freiburg, Freiburg, Germany
Search for more papers by this authorFranco Strumia
Dipartimento di Fisica, Pisa University, Pisa, Italy
Search for more papers by this authorCorresponding Author
Thomas Schmitt
Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
Correspondence: Oliver Niehuis, Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany. E-mail: [email protected]; and Thomas Schmitt, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany. E-mail: [email protected]Search for more papers by this authorCorresponding Author
Oliver Niehuis
Evolutionary Biology and Ecology, Institute of Biology (Zoology), Albert Ludwig University of Freiburg, Freiburg, Germany
Correspondence: Oliver Niehuis, Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany. E-mail: [email protected]; and Thomas Schmitt, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany. E-mail: [email protected]Search for more papers by this authorAbstract
Cuckoo wasps (Hymenoptera: Chrysididae) are a species-rich family of obligate brood parasites (i.e. parasitoids and kleptoparasites) whose hosts range from sawflies, wasps and bees, to walking sticks and moths. Their brood parasitic lifestyle has led to the evolution of fascinating adaptations, including chemical mimicry of host odours by some species. Long-term nomenclatural stability of the higher taxonomic units (e.g. genera, tribes, and subfamilies) in this family and a thorough understanding of the family's evolutionary history critically depend on a robust phylogeny of cuckoo wasps. Here we present the results from phylogenetically analysing ten nuclear-encoded genes and one mitochondrial gene, all protein-coding, in a total of 186 different species of cuckoo wasps representing most major cuckoo wasp lineages. The compiled data matrix comprised 4946 coding nucleotide sites and was phylogenetically analysed using classical maximum-likelihood and Bayesian inference methods. The results of our phylogenetic analyses are mostly consistent with earlier ideas on the phylogenetic relationships of the cuckoo wasps' subfamilies and tribes, but cast doubts on the hitherto hypothesized phylogenetic position of the subfamily Amiseginae. However, the molecular data are not fully conclusive in this respect due to low branch support values at deep nodes. In contrast, our phylogenetic estimates clearly indicate that the current systematics of cuckoo wasps at the genus level is artificial. Several of the currently recognized genera are para- or polyphyletic (e.g. Cephaloparnops, Chrysis, Chrysura, Euchroeus, Hedychridium, Praestochrysis, Pseudochrysis, Spintharina, and Spinolia). At the same time, our data support the validity of the genus Colpopyga, previously synonymized with Hedychridium. We discuss possible solutions for how to resolve the current shortcomings in the systematics of cuckoo wasp genera and decided to grant Prospinolia the status of a valid genus (Prospinolia stat.n.) and transferring Spinolia theresae [du Buysson 1900] from Spinolia to Prospinolia (Prospinolia theresae stat.restit.). We discuss the implications of our phylogenetic inferences for understanding the evolution of host associations in this group. The results of our study not only shed new light on the evolutionary history of cuckoo wasps, but also set the basis for future phylogenomic investigations on this captivating group of wasps by guiding taxonomic sampling efforts and the design of probes for target DNA enrichment approaches.
Supporting Information
Filename | Description |
---|---|
syen12323-sup-0001-FigureS1.pdfPDF document, 32.4 KB | Figure S1. Gene models of all ten investigated nuclear protein-coding genes. Gene identifies refer to those given by Hartig et al. (2012) and the gene name in parenthesis designates the most similar homologue in Drosophila melanogaster Meigen 1830. Depicted are coding exons (blue bars) and introns (black bars) of each gene. Exon and intron boundaries were annotated by aligning transcripts of Chrysis terminata to the genomic nucleotide sequence of the corresponding gene of this species. Numbers specify the length (in nucleotides) of all sequenced exonic sections of a given gene (numbers in parentheses include also the length of the introns), using the C. terminata nucleotide sequence as reference. An asterisk above an intron indicates that the intron was absent in some of the investigated species (indicated in Fig. 1). |
syen12323-sup-0002-FigureS2.pdfPDF document, 55.6 KB | Figure S2. Phylogenetic relationships between and within major cuckoo wasp lineages (continued in Figure S2) inferred in a Bayesian framework with the software MrBayes and applying the same supermatrix and the same substitution models as in the analysis with the software IQ-TREE (see Figs 1, 2). Shown is the 50% majority rule consensus tree. Posterior probability values were inferred from 56 000 sampled trees and are indicated in the tree by colour codes (percentage values were rounded to the first digit before the decimal point). Cephalonomia tarsalis (Bethylidae) and Anteon sp. (Dryinidae) served as outgroups for rooting of the tree. |
syen12323-sup-0003-FigureS3.pdfPDF document, 55.6 KB | Figure S3. Continuation of Figure S2. |
syen12323-sup-0004-TableS1.xlsxExcel 2007 spreadsheet , 79.3 KB | Table S1. Sample information. |
syen12323-sup-0005-TableS2.xlsxExcel 2007 spreadsheet , 11.4 KB | Table S2. Oligonucleotide primers used for the amplification of ten nuclear genes and COI in cuckoo wasp and selected outgroup species. |
syen12323-sup-0006-TableS3.xlsxExcel 2007 spreadsheet , 29 KB | Table S3. List of Genbank accession numbers. |
syen12323-sup-0007-TableS4.xlsxExcel 2007 spreadsheet , 27.4 KB | Table S4. GC content by gene as percentages (%). |
syen12323-sup-0008-FileS1.fastaPDF document, 918.1 KB | File S1. Supermatrix with the multiple nucleotide sequence alignment (4946 sites, 189 sequences referring to a total of 188 species) of the concatenated nucleotide sequences of ten nuclear-encoded gens and of one mitochondrial gene, all protein-coding. |
syen12323-sup-0009-FileS2.tsvPDF document, 205 B | File S2. Table indicating gene boundaries in the supermatrix given in File S1. |
syen12323-sup-0010-FileS3.nexPDF document, 323 B | File S3. Supermatrix partition table in Nexus format. |
syen12323-sup-0011-FileS4.pdfPDF document, 457.5 KB | File S4. Compilation of host associations. |
syen12323-sup-0012-FileS5.nwkPDF document, 11 KB | File S5. Phylogenetic tree (phylogram) with bootstrap support values as depicted in Figs 1, 2 in Newick format. |
syen12323-sup-0013-FileS6.nexPDF document, 100.5 KB | File S6. Phylogenetic tree (phylogram) with posterior probability values as depicted in Figures S2 and S3 in Nexus format. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Aberer, A.J., Krompass, D. & Stamatakis, A. (2013) Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Systematic Biology, 62, 162–166.
- Antropov, A.V. (1995) A new tribe of cuckoo wasps (Hymenoptera, Chrysididae) from Uzbekistan. Zoologichesky Zhurnal, 74, 55–59.
- Astrin, J.J. & Stüben, P.E. (2008) Phylogeny in cryptic weevils: molecules, morphology and new genera of Western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae). Invertebrate Systematics, 22, 503–522.
- Bank, S., Sann, M., Mayer, C. et al. (2017) Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Molecular Phylogenetics and Evolution, 116, 213–226.
- Berland, L. & Bernard, F. (1938) Faune de France 34. Hyménoptères Vespiformes. III (Cleptidae, Chrysidae, Trigonalidae). Paul Lechevalier, Paris, France.
- Blösch, M. (2000) Die Grabwespen Deutschlands. Lebensweise, Verhalten, Verbreitung. Die Tierwelt Deutschlands, 71. Teil. Goecke & Evers, Keltern.
- Blüthgen, P. (1961) Die Faltenwespen Mitteleuropas (Hymenoptera, Diploptera). Abhandlungen der deutschen Akademie der Wissenschaften zu Berlin, 2, 1–248.
- Bohart, R.M. & Kimsey, L.S. (1982) Synopsis of the Chrysididae in America north of Mexico. Memoirs of the American Entomological Institute, 33, 1–266.
- Bordage, E. (1913) Notes biologiques recueilles a l'île de la Réunion. Bulletin scientifique de la France et de la Belgique, 47, 377–412.
- Bossert, S., Murray, E.A., Blaimer, B.B. & Danforth, B.N. (2017) The impact of GC bias on phylogenetic accuracy using targeted enrichment phylogenomic data. Molecular Phylogenetics and Evolution, 111, 149–157.
- Branstetter, M.G., Danforth, B.N., Pitts, J.P. et al. (2017) Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Current Biology, 27, 1019–1025.
- Carpenter, J.M. (1999) What do we know about chrysidoid (Hymenoptera) relationships? Zoologica Scripta, 28, 215–231.
- Chernomor, O., von Haeseler, A. & Minh, B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65, 997–1008.
- Efron, B. (1979) Bootstrap methods: another look at the jackknife. Annals of Statistics, 7, 1–26.
- Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.
- Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.
- Gess, S.K. (1996) The Pollen Wasps. Harvard University Press, Cambridge, MA, U.S.A.
10.4159/harvard.9780674281684 Google Scholar
- Gess, S.K. & Gess, F.W. (2014) Wasps and bees in southern Africa, SANBI Biodiversity Series 24. South African National Biodiversity Institute, Pretoria.
- Hartig, G., Peters, R.S., Borner, J., Etzbauer, C., Misof, B. & Niehuis, O. (2012) Oligonucleotide primers for targeted amplification of single-copy nuclear genes in apocritan Hymenoptera. PLoS One, 7, e39826.
- Heinrich, J. (1964) Beitrag zur Hymenopterenfauna des westlichen Unterfranken. 1. Teil, Chrysididae. Nachrichten des Naturwissenschaftlichen Museums der Stadt Aschaffenburg, 71, 1–28.
- Hicks, C.H. (1929) Pseudomasaris edwardsii Cresson, another pollen-provisioning wasp, with further notes on P. vespoides (Cresson). The Canadian Entomologist, 61, 121–125.
10.4039/Ent61121-6 Google Scholar
- Hungerford, H.B. (1937) Pseudomasaris occidentalis (Cresson) in Kansas. Journal of the Kansas Entomological Society, 19, 133–134.
- Hurvich, C. & Tsai, C. (1989) Regression and time series model selection in small samples. Biometrika, 76, 297–307.
- Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589.
- Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.
- Kearse, M., Moir, R., Wilson, A. et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.
- Kimsey, L. (1992) Functional morphology of the abdomen and phylogeny of the chrysidid wasps (Hymenoptera: Chrysididae). Journal of Hymenoptera Research, 1, 165–174.
- Kimsey, L.S. (1983) Review of the euchroeine chrysidids (Hymenoptera: Chrysididae). The Pan-Pacific Entomologist, 59, 140–147.
- Kimsey, L.S. & Bohart, R.M. (1991) [1990]) The Chrysidid Wasps of the World. Oxford University Press, Oxford, U.K.
- Krombein, K.V. (1967) Trap-nesting Wasps and Bees: Life Histories, Nests, and Associates. Smithsonian Press, Washington, DC, U.S.A.
10.5962/bhl.title.46295 Google Scholar
- Kunz, P.X. (1994) Die Goldwespen (Chrysididae) Baden-Württembergs. Beihefte zu den Veröffentlichungen für Naturschutz und Landschaftspflege in Baden-Württemberg, 77, 1–188.
- Linsenmaier, W. (1959) Revision der Familie Chrysididae (Hymenoptera) mit besonderer Berücksichtigung der europäischen Spezies. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 32, 1–232.
- Linsenmaier, W. (1968) Revision der Familie Chrysididae (Hymenoptera). Zweiter Nachtrag. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 41, 1–144.
- Linsenmaier, W. (1969) The chrysidid wasps of Palestine (Hym. Chrysididae). A faunistic catalogue with descriptions of new species and forms. Israel Journal of Entomology, 4, 343–376.
- Linsenmaier, W. (1997) Altes und Neues von den Chrysididen (Hymenoptera, Chrysididae). Entomofauna, 18, 245–300.
- Lucena, D.A.A. & Melo, G.A.R. (2018) Chrysidid wasps (Hymenoptera: Chrysididae) from Cretaceous Burmese amber: phylogenetic affinities and classification. Cretaceous Research, 89, 279–291.
- Mauss, V. (1996) Contribution to the bionomics of Ceramius tuberculifer Saussure (Hymenoptera, Vespidae, Masarinae). Journal of Hymenoptera Research, 5, 22–37.
- Mayer, C., Sann, M., Donath, A. et al. (2016) BaitFisher: a software package for multispecies target DNA enrichment probe design. Molecular Biology and Evolution, 33, 1875–1886.
- Mocsáry, A. (1889) Monographia chrysididarum orbis terrarum universi. Academia Scientiarum Hungarica, Budapest.
- Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.
- Niehuis, O. (1998) Hedychridium wahisi sp.n., a new cuckoo wasp from Italy. Beiträge zur Entomologie, 48, 525–530.
- Niehuis, O. & Wägele, J.W. (2004) Phylogenetic analysis of the mitochondrial genes LSU rRNA and COI suggests early adaptive differentiation of anal teeth in Chrysidine cuckoo wasps (Hymenoptera: Chrysididae). Molecular Phylogenetics and Evolution, 30, 615–622.
- Orlovskytė, S., Budrys, E., Budrienė, A., Radzevičiūtė, R. & Soon, V. (2016) Sibling species in the Chrysis ignita complex: molecular, morphological and trophic differentiation of Baltic species, with a description of two new cryptic species (Hymenoptera: Chrysididae). Systematic Entomology, 41, 771–793.
- Ouayogode, B.V. (1979) Larval biology of some Utah Chrysididae. PhD thesis, Utah State University, Logan, UT.
- Parker, F.D. & Bohart, R.M. (1966) Host-parasite associations in some twig-nesting Hymenoptera from western North America. The Pan-Pacific Entomologist, 42, 91–98.
- Pärn, M., Soon, V., Vallisoo, T., Hovi, K. & Luig, J. (2015) Host specificity of the tribe Chrysidini (Hymenoptera: Chrysididae) in Estonia ascertained with trap-nesting. European Journal of Entomology, 112, 91–99.
- Paukkunen, J., Berg, A., Soon, V., Ødegaard, F. & Rosa, P. (2015) An illustrated key to the cuckoo wasps (Hymenoptera, Chrysididae) of the Nordic and Baltic countries, with description of a new species. ZooKeys, 548, 1–116.
- Peters, R.S., Krogmann, L., Mayer, C. et al. (2017) Evolutionary history of the Hymenoptera. Current Biology, 27, 1013–1018.
- Peters, R.S., Niehuis, O., Gunkel, S. et al. (2018) Transcriptome se-quence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Molecular Phylogenetics and Evolution, 120, 286–296.
- Polidori, C., Bevacqua, S. & Andrietti, F. (2010) Do digger wasps time their provisioning activity to avoid cuckoo wasps (Hymenoptera: Crabronidae and Chrysididae)? Acta Ethologica, 13, 11–21.
- Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer v1.6. URL [WWW document]. URL http://tree.bio.ed.ac.uk/software/tracer/ [accessed on 21 March 2018]
- Rice, P., Longden, I. & Bleasby, A. (2000) EMBOSS: the European molecular biology open software suite. Trends in Genetics, 16, 276–277.
- Ronquist, F., Teslenko, M., van der Mark, P. et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.
- Rosa, P. (2017) Review of the Palaearctic species of the genus Colpopyga (Hymenoptera: Chrysididae) with description of a new species. Zoosystematica Rossica, 26, 294–306.
- Rosa, P., Antropov, A.V. & Xu, Z. (2015) A catalogue of the Chrysididae (Insecta, Hymenoptera) types deposited in the Zoological Museum, Moscow Lomonosov State University, Russia. Zootaxa, 3990, 1–31.
- Rosa, P., Belokobylskij, S.A. & Zaytseva, L.A. (2017b) The Chrysididae types described by Semenov-Tian-Shanskij and deposited at the Zoological Institute of the Russian Academy of sciences, Saint Petersburg (Insecta, Hymenoptera). Proceedings of the Zoological Institute RAS, Supplement, 5, 1–266.
- Rosa, P., Lotfalizadeh, H. & Pourrafei, L. (2013) First checklist of the chrysidid wasps (Hymenoptera: Chrysididae) of Iran. Zootaxa, 3700, 1–47.
- Rosa, P., Pavesi, M., Soon, V. & Niehuis, O. (2017a) Pseudochrysis Semenov, 1891 is the valid genus name for a group of cuckoo wasps frequently referred to as Pseudospinolia Linsenmaier, 1951 (Hymenoptera, Chrysididae). Deutsche Entomologische Zeitschrift, 64, 69–75.
- Rosa, P., Wei, N. & Xu, Z. (2014) An annotated checklist of the chrysidid wasps (Hymenoptera, Chrysididae) from China. ZooKeys, 455, 1–128.
- Rosenheim, J.A. (1989) Behaviorally mediated spatial and temporal refuges from a cleptoparasite, Argochrysis armilla (Hymenoptera: Chrysididae), attacking a ground-nesting wasp, Ammophila dysmica (Hymenoptera: Sphecidae). Behavioral Ecology and Sociobiology, 25, 335–348.
- Sanderson, M.J. & Shaffer, H.B. (2002) Troubleshooting molecular phylogenetic analyses. Annual Review of Ecology and Systematics, 33, 49–72.
- Sann, M., Niehuis, O., Peters, R.S. et al. (2018) Phylogenomic analysis of Apoidea sheds new light on the sister group of bees. BMC Evolutionary Biology, 18, 71.
- Schmid-Egger, C. (1995) Ergänzungen zur Taxonomie und Verbreitung von zwei Arten der Gattung Hedychridium Abeille 1878 (Hymenoptera, Chrysididae). Linzer biologische Beiträge, 27, 401–411.
- Shimodaira, H. (2002) An approximately unbiased test of phylogenetic tree selection. Systematic Biology, 51, 492–508.
- Simon, C., Buckley, T.R., Frati, F., Stewart, J.B. & Beckenbach, A.T. (2006) Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 37, 545–579.
- Soon, V., Budrys, E., Orlovskytė, S., Paukkunen, J., Ødegaard, F., Ljubomirov, T. & Saarma, U. (2014) Testing the validity of Northern European species in the Chrysis ignita species group (Hymenoptera: Chrysididae) with DNA barcoding. Zootaxa, 3786, 301–330.
- Soon, V. & Saarma, U. (2011) Mitochondrial phylogeny of the Chrysis ignita (Hymenoptera: Chrysididae) species group based on simultaneous Bayesian alignment and phylogeny reconstruction. Molecular Phylogenetics and Evolution, 60, 13–20.
- Strohm, E., Kroiss, J., Herzner, G., Laurien-Kehnen, C., Boland, W., Schreier, P. & Schmitt, T. (2008) A cuckoo in wolves' clothing? Chemical mimicry in a specialized cuckoo wasp of the European beewolf (Hymenoptera, Chrysididae and Crabronidae). Frontiers in Zoology, 5, 2.
- Strohm, E., Laurien-Kehnen, C. & Bordon, S. (2001) Escape from parasitism: spatial and temporal strategies of a sphecid wasp against a specialised cuckoo wasp. Oecologia, 129, 50–57.
- Sullivan, J. & Joyce, P. (2005) Model selection in phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 36, 445–466.
- Theunert, R. (1997) Eine Goldwespe als Brutschmarotzer einer Wegwespe (Insecta: Hymenoptera). Mitteilungen des internationalen entomologischen Vereins, 22, 9–10.
- Tillyard, R.J. (1926) The Insects of Australia and New Zealand. Angus & Robertson, Sydney.
- Tormos, J., Asís, J.D., Beneitez, A. & Gayubo, S.F. (2009) Description of the mature larva of the sand wasp Bembix bidentata and its parasitoids (Hymenoptera: Crabronidae, Chrysididae, Mutillidae). Florida Entomologist, 92, 43–53.
- Tormos, J., Krombein, K.V., Asís, J.D. & Gayubo, S.F. (2001) A systematic study of larvae of Chrysidini (Hymenoptera: Chrysididae). Annals of the Entomological Society of America, 94, 809–834.
- Wilkinson, M. (1995) Coping with abundant missing entries in phylogenetic inference using parsimony. Systematic Biology, 44, 501–514.
- Wiśniowski, B. (2009) Spider-Hunting Wasps (Hymenoptera: Pompilidae) of Poland. Diversity, Identification, Distribution. Ojców National Park, Ojców.
- Wolf, H. (1971) Prodromus der Hymenopteren der Tschechoslowakei, pars 10: Pompiloidea. Acta faunistica entomologica Musei Nationalis Pragae, 14 (Supplement 3), 1–76.
- Wurdack, M., Herbertz, S., Dowling, D. et al. (2015) Striking cuticular hydrocarbon dimorphism in the mason wasp Odynerus spinipes and its possible evolutionary cause (Hymenoptera: Chrysididae, Vespidae). Proceedings of the Royal Society of London B, 282, 20151777.
- Yamada, Y. (1991) Role of the teeth on the abdominal end in Praestochrysis shanghaiensis (hymenoptera, Chrysididae). Japanese Journal of Entomology, 59, 99–103.